
206 

2. 

3. 

4. 
5. 

6. 

7. 

a. 

9. 

10. 

11. 

12. 

13. 

14. 

i5. 

I 

SATCHELOR G.K., The effect of Brownian motion on the bulk stress in a suspensionof spherical 
particles. J. Fluid Mech. Vo1.83, pt.1, p.97-117, 1977. 

XRJAGUIN B., A theory of interaction of particles in presence of electric double layers 
and the stability of lyophobe colloidsand disperse systems. Acta physicochimica, URSS, 
Vol.10, No.3,p.333-346, 1939. 

tiulsion Science Ed. Sherman P.L. N-Y. Acad. press p-496, 1968. 
XHENKEL J.H. and KITCHENER J.A., A test of the Derjaguin-Verwey-Overbeek theory with a 
colloidal suspension. Trans. Faraday Sot. Vo1.56, pt.1, p-161-173, 1960. 

iAWAB M.A. and MASON S.G., The viscosity of dilute emulsions. Trans. Faraday Sot. Voi.54, 
pt.11, p.1712-1723, 1958. 

SINCHENKO A.Z., Hydrodynamic interaction of two identical liquid spheres in a linear flow 
filed. PMM Vo1.47, No.1, 1983. 

IINCHENICO A-Z., Slow axisymmetric motion of two drops in a viscous medium. PMM Vo1.44, No-l, 
1980. 

JACHOLDER E. and WEIHS D., Slow motion of a fluid sphere in the vicinity of another sphere 
or a plane boundary - Chem. Engng Sci., V01.2'7,N0.10, p.1817-1828, 1972. 

BATCHELOR G.K., The stress system in a suspension of force-free particles. J. Fluid Mech. 
vo1.41, pt.3, p.545-570, 1970. 
BATCHELOR G.K. and GREEN J.T., The hydrodynamic interaction of two small freely moving 
spheres in a linear flow field. J. Fluid Mech. Vol.56, pt.2, p.375-400, 1972. 

ZINCHENKO A.Z., Calculation of the effectiveness of gravitational coagulation of drops 
allowing for internal circulation. PMM Vo1.46, No.1, 1982. 

ASTARITA G. and MARUCCI G., Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, 
London, N.Y. 1974. 
BATCHELOR G-K., Advances in microhydrodynamics. In book: Teoreticheskaia i prikladnaia 
mekhanika. Tr. XIV Mezhdunar. kongr. IUTAM, Moscow, Mir, 1979. 
RUSSEL W.B., The rheology of suspensions of charged rigid spheres. J. Fluid Mech., VoI.85, 
pt.2, p.209-232, 1978. 

Translated by L.K. 

Pm ~.~.S,~.,Vo1.48,No.2,pp.206-X3,1984 CcZl-8928/'84 $10.00+0.00 
Printed in Great Britain 01985 Pergamon Press Ltd. 

ON THE ~TH~TI~AL DESCRIPTION OF SPIRAL WAVES IN 
DISTRIBUTED CHEMICAL SYSTEMS* 

G.A. DENISOV 

Selfexcited oscillatory modes in a chemically active medium of general 
form with diffusion are studied. The reactor is in the shape of a circle 
with impermeable boundaries and the medium is in mechanical equilibrium. 
Asymptotic forms are found for the case of a near-threshold value of the 
parameter for two kinds of selfexcited oscillations, rotating waves and 
standing symmetric waves, under the assumption that a vibrational loss of 
chemical equilibrium stability occurs. 

Rotating spiral (reverberator) and divergent concentric (donducting centre) waves of 
chemical concentrations or electrical excitation have been observed in experiments on vibra- 
tional modes in distributed biological and chemical systems /l--3/. The reverberator can have 

several branches (several spiral wave fronts rotate around one local section of the medium). 
Analogous modes are detected in the combustion of cylindrical specimens /4/. Different 

approaches (see /5-8/and the bibliography presented there) were used to describe such modes 

on the basis of diffusion equations with non-linear kinetics. ** In one of the approaches, the 

occurence of rotating waves was associated with loss of stability of the stationary spatially 
homogeneous mode, and therefore, was examined from the aspect of the theory of bifurcation of 
solutions of non-linear equations dependent on a parameter. The analytical difficulties that 

occur here were successfully overcome in /7, 8/ by using group methods of bifurcation theory 

/Q/. It was found that in the bifurcation situation examined, solutions, periodic in time, 

*Prikl.Matem.Mekhan.,48,2,293-301,1984 

** Dikanskii A.S., Diffusion equations with non-linear kinetics., Pushchino, Deposited in 
VINITI 10-04-80, No.1405-80. 
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of just two kinds bifurcate from the stationary solution (which can be considered identically 
zero) in the general case in the systemphasespace, namelywavesrotatinginoppositedirections 

(two such solutions), and standing waves /a/. 
However, the method utilized in /7/ did not result in explicit expressions for the 

asymptotic forms of the bifurcating solutions and for the quantities governing the nature of 
the bifurcation. To eliminate these deficiencies, a method is used below that stems from 

the work of V.I. Iudovich /lo/ and others. Solutions of a special kind that are periodic in 

time are sought: solutions that are stationary in a certain rotating coordinate system, and 
solutions that are even in the angular coordinate. This reduces the symmetry of the initial 
problem and enables the bifurcation to be investigated by the Liapunov-Schmidt method /ll/. 
The occurrence of solutions of both the types listed is studied, where the fact of standing- 

wave bifurcation is deduced from the results obtained in /12/. 

1. Formulation of the problem. Consider the system of equations 

au/at'=DAu f- E(u,Y); Wavlass=O 

u = @I. . . ., 3; n > 3; D = diag (d,, . . ., d,,) 

di > 0, i = 1,. . ., n; f (u, y) = (fl (II, y), . . .,f, (u, Y)J 
in a circle SR of radius R. 

(1.1) 

Here A is the two-dimensional Laplace operator, v is the normal to the boundary asa of 
the circle SA, and y is a real parameter. Let r', 9' be polar coordinates in Sa. By means of 
the substitution r--F r’/R,t+t’lR1 we can reduce (1.1) to the form 

Wat=DAu+F(u, y) inS1=S (F(.,y)=R*f(.,y)) (1.2) 

awav=o on as (1.3) 

We note that the role of the parameter Y in (1.2) can be performed byR2in .particular 
(here f is independent of y ). 

We assume that the following is satisfied. 

Condition 1. The functions Fl(c, y) :R" X Rl +R' are analytic in EE U and ye r (U is 
a neighbourhood of zero of the n-dimensional Euclidean R", I'C R'is a certain interval); the 
Taylor expansion of the vector function F(z,y) at the zero of R” has the form 

F (21 Y) = jgl Mj (Y) 2’; Mj(y):RnXaes x R* (f paa) -+ R* (1.4) 

Here Mj(y) are j-linear operators; all the eigenvalues of the matrix M, (Y) = II aR1 (0, 

Y)/&jII lie strictly in the left half-plane of the complex plane. 
It follows from condition 1 that the concentrated systemcorresponding to (1.2) 

duldt = F (u, y) (II E R”, y E r) (i-5) 
has the coarse asymptotically stable singularity u -0. The question of the stability of the 
zeroth solution of theadistributed system (1.2) and (1.3) is related in a known manner to the 
study of the eigenvalue problem 

DAv+M1(y)v=uv; av/avIss=o (1.6) 

Each eigenvalue u of problem (1.6) is an eigenvalue of the matrix G(x,,~~, Y) = -xPk2D + 

M, (y), where xPlrL is a certain eigenvalue of the problem 

- A9 = x4p; aq/av los = o (1.7) 

value 
We shall say that the eigenvalue 0 of problem (1.6) is generated by a corresponding eigen- 
of problem (1.7). Each eigenvector function of problem (1.6) corresponding to u has the 

form 
"o=&&X~ (1.8) 

I 1, n2=XO*2-0 

const *&I = I JO bhkr), x2 ==&>O, k>l 
sin pt3 
mspee’ x~=&>O;P>O;~>~ 

(1.9) 

or is a linear combination of vector functions of the form (1.8). 
of the matrix G (x2, Y) 

Here g. is an eigenvector 
corresponding to its eigenvalue 

(1.7) corresponding to the eigenvalue x2, 
sr *us is an eigenfunction of problem 

and JP(.) is a Bessel function of the first kind of 
order p. All these known facts are established by expanding the eigenvector functions of 
problem (1.6) in Fourier series in eigenfunctions of problem (1.7). 

For certain values of ye r let the trivial solution of system (1.21, (1.31 be 



asymptotically stable, and for a further change YET at the time y = ye becomes unsta;;s 
because cf passage of a pair of complex-conjugate eigenvalues sTlrz of problem (1.6) Into +~??a 
right half-plane. We wil.1 examine the general case, i.e., we will assume the foilowinq to se 
satisfied. 

Condition 2. The intersection of the spectrum of problem (1.6) for y = ye with the lmag- 
inary axis consists of a pair of eigenvalues u 1,2 = zioi0, (a0 # 0); the remaining ekgenvalues 0; 
problem (1.6) for y = y* lie strictly in the left half-plane of the complex plane; the gl.: 
are generated by one and only one eigenvalue xpk*> 0 of problem (1.7) ; the eigenvalues --iw, _. 
of the matrix G (xpkr y*) are single. 

Note that when n =2 the situation mentioned is not realized (the spur of the matrix 
G(~~~~,y*~ cannot vanish because of condition I). 

2. Bifurcation of sofutions of the rotating spiral wave type. Below, p and 
k are non-negative integers defined by condition 2. It is assumed that p > 1. It will be 
proved that as y changes a pair of solutions that are periodic in time bifurcate at the crit- 
ical time from a trivial solution of system (1.2), (L.3), each stationarily in a certain 
rotating coordinate system and periodically with period Znip in the angular coordinate. 

We make the substitution 0-e' -S$t;B #O in (1.2) and we consider the stationary problem 
for the vector equation obtained 

Mu~DAu+62au/aefF(v,y)=O (3.1, 
Wlk~131=07 u (r, e + 2x) = u (r, e) (2.1) 

We let Q be the complex hull of a set of real-valued vector functions u E c*(s)n Cl(S). 
satisfying (2.21, and 
((u, v) I uv) 

Jf, H, and H1 the Rilbert spaces obtained by closing Q in the metrics 

(ix, V)H = j (u. v) dS; (u, V)ZI~ = 5 [(IX, vf + (DAu, DAB)] dS t2.31 

Let T,:H+H be 

(2.4) 

the representation of a group of rotations of a circle 

T,u (r, e) =u(r,e+a) (uEB,uER~) (2.53 

The identity satisfied formally 
T,Mu = MT,u 

shows that in addition to each solution u~X,;au/ae+O in Ii, Eq.(2.1) allows of a one-para- 
meter family of solutions of the form S=X T,u for the same value Q#O. We call the corres- 
ponding value Q#O the angular frequency. Evidently, a time-periodic solution u(r, 8' -&) 
of (1.21, which we shall call a solution of the rotating spiral wave (RSW) type, is in one-to- 
one correspondence with each family of solutionsu,EXa; ahtae f Oin Hof (2.11 with angular 
frequency Q. If the solution UEH,,; &/a#0 in Hexists and is periodic in 8 with minimal 
period &c/tn (m is a natural number), then the RSW type solution of (1.2) possesses the same 

property. In this case we will call the number m the number of branches of the RSW type 
solution. 

We say that the number y* is a branch point of the solution of RSW type if one-parameter 
families QOO, a@): ue*~fl,; ,3uM ,@@+O in Hy#~*eti.st, continuous in yE r and satisfying 
(2.1) when y runs through a certain interval having y* as its limit point, where a@)-+ o,im, 
u(y) +O in Ha for y*yr. Together with each pair u,a:uE H,; auiti+o in H;8 +O satisfy- 

ing (2.1), the pair v, -Q satisfies this equation, where v(r, e)= u (r, -6% 
Let the Taylor expansion of the vector-function F(z,y) in the neighbourhood of the point 

(O,y,)= R" x R' have the form 

We introduce the operator &: H,-cH by setting for each vector function UIZ Ht 

BQu 5~ Db + mlao + MM (2.7) 

It can be shown by a Fourier series expansion that when condition 2 is satisfied the 
operator 3s has a zero eigenvalue if and only if Q- fbZ,,q= 0,/p. The kernel N @) of the 

operator Bee B is two-dimensional; we select the following vectors as basis in N(B) 

cp1=@-@J,(x,kr); cp2=7ie"BJp&.a) t=, 

(g is the eigenvector of the matrix G(x,a, y+) its corresponding eiqenvalue is +ioo). It 

can be shown similarly that the operator BQ+: H,+H conjugate to BQ in H 
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B&I 3 Ilbu - ~~~ + M&I (2.9) 

((.)r denotes transposition) has a.zero eigennumber if and only if hl E j&*; the kernel N (B*) 
of the operator Ba+= B* is two-dimensional and has the following vectors as basis 

UJ1=gre+eJ,(~prr); cPI=cei@JI)(xpkr) (2.10) 

where gT is the eigenvector of the matrix Gr(xsr2, y,,) corresponding to its eigenvalue -io,. 

It follows from condition 2 that (g,gr)+ 0. We take the normalization condition 

(g, gT) = (2xfPJ1; I,, ==i JPB (xpkr) r dr (2.11) 

0 
such that (qr, @'j)H E: Sfj; i,j = 1,2. 

Lema 1. For the operator BQ to be reversible, it is necessary and sufficient that the 
points f ipQ do not belong to the spectrumof the problem (1.6) for y = yt (the number p is 
defined in condition 2). 

Lemma 2. Only critical values of the parameter y can be bifurcation points of the RSW 
types solution: let y+y,, @~)+Q,, and let the corresponding non-trivial solutions 
(2.1) tend to zero in the norm N,. Then the numbers fip62, belong to the spectrum of 
(1.6) for y==yl. 

Lemma 3. For the equation 

Bu=h (hEIS) 

to be solvable, it is necessary and sufficient that the conditions 

(h, @bi), = 0, (i= 1,2) 
be satisfied. 

II of 
problem 

(2.12) 

2.13) 

The proof of necessity in Lemma 3 is trivial. To prove the sufficiency in Lemma 3 and 
Lemma 1, the equation Bpu=h(b&Hf is reduced to an equation with a fully continuous operator 
in HZ, after which Fredholm's theorem is applied. Such a reduction can be performed by the 
method described in /13/, say. Every solution utma of the equation obtained is an element 
from,& as can be seen by applying Riesz's theorem. Lemma 2 is proved in exactly the same 
way as the proof of Lemma 1.3 in /12/; here the Holder and Minkowski inequalities and the 
imbedding inequalities 

maz lul<~~llell~,: ll~~~~~s,fc~[Iuil~, (2.14) 
@l e&s 

resulting from the second fundamental inequality for elliptic operators f13/ are used. The 
constants e,~, are independent of u. 

Lemmas 1 and 3 as a set denote that the operator Be is a Fredholm operator ,011. It 
follows from Lemma 2 that small solutions u6ZNH,;au/&# 0 in H for (2.1) and (2.6) should 
be sought only for values of the parameter y close to ye. We shall seek small real.solutions 
in the form 

u=atpr.+acp,+y; (y,Q$#=O, i-i?2 (2.15) 

and their corresponding angular frequencies in the form n =61,$-p, where a and p are unknown 
small parameters. It can be seen that T, r++ =N(B),i 5= 1,2; T&E N,\N (B) = IN (B) (W (B) is 
the orthogonal complement to N(B)in H,). Since the solution u is determined only to the 
accuracy of the transformation T,, the parameter a of the family u,, = T,u can be fixed by the 
requirement u>o and we can set in place of (2.15) (by analogy with /12/) 

u=a*-l-Y @>019=s)l+cp2) (2.16) 

Substituting (2.16) into (2.1) and taking account of (2.6), we obtain 

(2.17) 

(the prime denotes that the term M&ll, +y)) is not present in the sum). Here P denotes the 
projector on H \N (B*)= W(B*) 

pu =v-(u* ~1h~l-(U~Q)a)HqI (2.18) 

Projecting (2.17) on to N (B*) and on to IN (B*), we obtain 

By=P{-& 
*=I .F=o 

(2.19) 
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We shall consider E as an operatox acting from AN(B) into AN(P). Then ali the condi- 
tions of the theorem on implicit operators /II/ are satisfied for (2.19): for sufficiently 
small 6, u,~, y,itsrightside is a continuous operator in IN (B*) analytically dependent on 
6, a,p, y, while the operator B“ exists and is bounded by virtue of Lemma 3. Consequently, 
in a sufficiently small neighbourhood of the point Y =O,d = a = p = 0 a unique solution 
y =y(i$a, r), exists which can be found by the method of undetermined coefficients by substit- 
uting the following series into (2.19) : 

By such a method we obtain 

YOOO=~ 12.11) 

YlOO = YOlO - YOOl = YIOO = yoor = y101= 

Yell- y300- Yoo3 = yto1= YE03 = yo1r = 0 

yoso - - B-1P&o*~; Yno = - B-‘PM& 

yoso = - B-v pfs# + uw, NJ, Yawfl 

Ya10 = - B-‘P VI%+4 -I- ~llYllok Y111= - B-‘P PYlldael 

YlRo = - B-‘P PM%0 (91 Yllo) -b JfdP + M,,Yo,o] 

(2.22) 

(2.23) 

etc. Now substituting (2.21) into (2.201, we obtain a system of two bifurcation equations, 
each of which has the form 

(2.24) 

Since real solutions of (2.1) are sought, the expression in the braces in (2.20) should 
be real and the bifurcation equations are equivalent. Discarding one and multipLying the 
other by -1, we obtain 

--h(&,a,p)=- ~pqrt(~*,S*~,lfH~a f (2.251 

(~~~~~~~Y~~~ ~1)~~~+(~~0~~2~~~(~ Y~o)*~f)~~s + 
@Yn0G% @w)a&xtr+ 1. s-0 

where terms above the third power have been omitted. 

Theorem 1. Let conditions 1 and 2 be satisfied, and let the following inequalities 

Re h,,, # 0; Re h0~0 St 0 (2.26) 

hold. 
Then y* is a bifurcation point of two and only two solutions of the RSW type. These 

solutions exist for smali 6> 0(6(O) if Re h,,,Re kosOc O(Re h,,Re&j33>O). are specular;y 
symmetric to each other, have p branches, and are analytic functions of the parameter f/6 

(d-6); the angular frequencies Q,., = k((sz, + p) correspond to them, where p is an analytic 

function of p. We hence have 

a - (-8Re~~~Re~~~/3+#(~) (2.27) 

P = p-l8 Urn hII - Re hI= hdRe b,) + 0 Wl 

Proof. Note that h is an odd function of the variable a: the substitution e-c8 f p-‘n, 

a-w-a does not alter (2.19), while the left side of (2.20) transforms into its Opposite 

number. Reducing (2.25) by -a and writing down the first-degree terms in 6,a'.P explicitly, 

we obtain 
h, (S, a, p) ss0 ipp + hllOS f h000a0 + ..- =O (2.28) 

We set Re hl - hl,, Im &I = b, and we evaluate the Jacobian 

d thlt* $i) I d(a’.p) L%=Q-w==o 
=-pRehoso+ 0 (2.29) 

From (2.29) and the theorem on implicit functions it follows that for sufficiently small 

6, Eq.12.28) can be solved for a',p: functions a0 = g(6) and g = q(&] exist, analytic 
at the point 6 - 0, transforming (2.28) into an identity, and uniquely defined by the require- 

ment s(O) If n (0) z 0. Furthermore, we obtain from (2.29) 
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Hence f equalities (2.27) follow. 
Small solutions of the RSW type are representable in the form Of the Series 

u1.2 = a* (r, 5~0) -I- a2y0,, (r, =t@) + Say,m (r, *@-I- . . . (2.30) 

all of whose non-zeX0 terms, as can be seen by analyzing (2.22), (2.23), etc., are periodic 
in 0 = 0' - gt with minimal common period 2nlp. Therefore, they have p branches. The 

theorem is proved. 
From condition 1 the inequalities (2.141, and the results of /14/ follow that small (in 

the norm of the space &) solutions of (2.1) are functions from c"(s). 

3. Bifurcation of standing waves and radially symmetric time-periodic 
solutions. It is assumed below that p PG. It will be proved that for P>Q and when 

the conditions in Sect.1 are satisfied, a unique time-periodic solution, even in the angular 

coordinate - a standing wave /7, B/,is bifurcated from the trivial solution of system (1.2) 

and (1.3). Because of the arbitrariness of the selection of the origin of the angular coord- 
inates, this denotes generation of a system of one-parameter families of single-frequency 
time-periodic solutions(an invariant torus) in phase space. For p =0 a unique time-periodic 
solution is bifurcated from the trivial solution of system (1.2), (1.3). This solution is 
radially symmetric, and possibly corresponds to the experimentally observed leading centre 
regime. Its asymptotic form, nature of bifurcation, and stability can be studied by methods 

developed in /12, 15/. 
We reduce (1.2) to the form 

O&/&T = DAu + F(u, y) (3.1) 
au (T, T, eyar lrpl = 0 (3.2) 
u (.t, r, 8' + 24' = u (2, r, 0th u (z + 2n, r, 0’) = u (T, r, et) 

by substituting Ot-+r (0 is the unknown cyclic frequency of the desired periodic solution). 
Let 0% denote the set of complex-valued n-vector functions u defined in 10,2x] x S and 

such that 
lo) The function u is continuously differentiable with respect to r and u=Q for any 

fixed z (see Sect.2); 
2O) Conditions (3.2) are satisfied; 
30) If p>o, the function u is even in 8'. 
Letcis a subset of the set Q isolated by condition 3O; the Hilbert spaces H",H,O and 

Ha, HBr" are closures of the sets QOand QT* in the metrics of (2.3) and 

respectively. We introduce the operator A :IjTo,+H” and its conjugate operator in H", A* : 
H2” + H”, by setting 

Au= - DAu- MLou; A% E- DAu-/-iUip%(u~&o) 

The assumptions of Sect.1 mean that the intersections of the spectra of the operators A 
an& A* with the imaginary axis consist of pairs of simple eigenvalues fro,. The eigenvector 
of the operator A corresponding to its eigenvalue 40, is denoted by tp"% i.e., 

A@ + im,cp” = 0; f@*=& @?Sp8’JP (xgkr) 

while the eigenvector of the operatorA*corresponding to the eigenvalue +ioo is denoted by 
CD", i.e., 

A+@‘- io UP 0 5-2 0; W’“= go* cos p0’J, (wpb r) 
Here 

The equation fip", @@')R* = 1 holds. 
we pose the problem of seeking small non-zero &-periodic solutions u of (3.1) in the 

Hilbert space Hplo. We call the number y* a cycle bifurcation point if one-parameter families 

wy, u.+ : uy E H,,Q; n,+O (y#y,,), exist that are continuous in qE r and satisfy (3.1), when y 
runs through a certain interval, and have y+ as their limit point, where oy"+op;uy+O in 

Hno for y-y*. 
The solution of the above problem reduces to studying a bifurcation equation of the form 
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(2.24); the proofs needed for this, the auxiliary propositions, the reduction procedure, and 
the construction of the asymptotics of the small solutions are executed exactly as in /12/. 
We will limit oursevles solely to formulating the result. 

We will use the following notation: 

Theorem 2. Let conditions 1 and 2 be satisfied and the inequalities 

hold. Rs flloRs foso c 0 

Theny,is the bifurcation point of the single cycle UEH," which exists for small 

6 > 0 (6 C 0) if Re fllo # 0; Re fm f 0 fRhJWme > 01, andisananalytic functionoftheparameter 

Jb(f_); the quantitity p is an analytic function of 6. Hence 

u = (--6 Re filolRe f000)‘kp* + 0 (6) 

P ‘= (23F6 (Im fllo - Re flloIm fdRe f030) + 0 (W 

It can be seen by direct calculations that when p>O the cycle being generated at any 
instant is a periodic function in @'with period S/p, and when p SE 0 is a radially sym- 
metric function (independent of 8'). 

Example. Consider the system of equations 

au,/& = R” (-u1 + 3v&,) + AU, (3.3) 
ah/at = R* (-eu, - &as + e@) f e*Au, 
au,lat = ~8 (3 v&, + PI+ - euJ) + e*b 

e, fi > 0: B-cg i; c#+o 
in a circle S with impermeability conditions on the boundary. Here 

The concentrated system corresponding to (3.3) describes a non-linear oscillator with 
friction and a regulator in the positive feedback loop. In a distributed system the "sub- 
stance "-regulator diffusion coefficient greatly exceeds the diffusion coefficients of the 

oscillator components. 
Let x>O be a real parameter. Consider the matrix L,(x)= -@j- 1M,(y)l@. We call the 

minimal closed interval Ixl,xrl of values x(O<xl<xl) outside of which the matrix L(x) is stable 
(i.e., its spectrum lies in theleft half-plane) the instability interval. We set & =vX We 
have for the Hurwitz determinants of the characteristic equation of the matrix L(x) 

G~>~,Gq>O,GR>O,G~GP-GR~ep(e,~? 

Here $(c,x) is a third power polynomial in x. The roots n=i,xe=Jip of the polynomial 
p(0.x) vary slightly for e>O according to the theorem on implicit functions: xt. =: i + I7e f 

0 (es), ti zz 1.5 - 3.75e + 0 (81). Moreover, for e> 0 there is a negative root u<O. 
For sufficiently small R the.trivial solution of system (3.3) is asympotically stable. 

As R grows it becomes UnStabk fOUr times: for 

R’ = &’ = %&&. Rz = Rs* - @&, R’ = IS,” = %$I&, R’ = &a = @/x, 
and again becomes stable,three times: for 

R’ - Rx’ = %&,, R” = R0’ = x&x1, R’ - R,¶ = %0l=ih; O<R,,<Rl<R~< R*<R,<Rs<&-. 

For R>Rs stability is no longer acquired. For losses of stability at the critical times, 
the eigenvalues fi% of problem (1.6) are generated, respectively, by the eigenvalues Y~~*.~~~, 

* and X,~* of problem (1.7). An increase in the number of 1OSSeS of Stability to any 

pzviously assigned number can be attained be selecting @+f)'B. 

The author is grateful to E.E. Shnol' for his interest and to V.I. Yudovich for valuable 
remarks. 
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ON SAINT-VENANT TYPE CONDITIONS IN THE THEORY OF PIEZOELASTIC SHELLS* 

N.N. ROGACHEVA 

Saint-Venant type conditions extended to piezoelasticity are formulated. 
It is shown that one electrical condition is added to the well- 
known Saint-Venant mechanical conditions for piezoceramic shells with non- 
electrodized face surfaces. The Saint-Venant conditions accepted in 
elasticity theory remain true for shells with electrodized face surfaces. 

The complete state of stress and strain of a non-electric elastic shell is comprised of 
a deeply penetrating internal state of stress and strain described by the equations of shell 
theory, and of boundary layers localized near the edges. In formulating the boundary condi- 
tions for the internal state of stress and strain and the boundary layers, an important part 
is played by the Saint-Venant principle /l/, which is as follows as applied to elastic shells: 
if stresses are given arbitrarily on the edge of a shell, then non-selfequilibrated edge 
effects will generate a deeply penetrating solution and should be taken into account when 
analysing the state of stress and strain, while the part of the edge load not selfequilibrated 
over the thickness will cause a stress and strain state that will damp rapidly at the edge 
and is taken into account in analysing the boundary layer. 

In the case of piezoelastic shells, both electrical and mechanical quantities occur in 
the complete system of equations. Consequently, the question arises of what conditions of 
Saint-Venant type should the mechanical and electrical edge load satisfy. To answer this 
question, following /2/, we find a solution of the boundary layer problems and we clarify, in 
passing, what requirements the edge load should be subjected to in order for the boundary 
layer solution to have the necessary damping. That part of the load which does not satisfy 
these conditions should be taken into account in analysing the internal electroelastic state 
of the shell. 

1. We select a systemoftri-orthogonal coordinates as follows: curvilinear coordinates 
al and &,-lines of curvature of the middle surface, and y-lines orthogonal to them. 

*'rlk; .natem.Mekhan ..48,2,302-306,1984 


